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It is proved that for a broad class of quasistatic problems the correspondence 
principle is a corollary of the Volterra principle, and a foundation is given for 

the Il’iushin method of approximation fl5, IS]. 

1. It is known that the solution, based on the Volterra principle [ 1, 21 for the quasi- 
static problem of linear viscoelasticity for a homogeneous anisotropic material, whose 

elastic properties are invariant relative to the time reference point, reduces to the con- 
struction of some analytic function of several Volterra operators with kernels dependent 
on the difference in the arguments. It is shown below that under quite general assump- 
tions the exact solution of this problem can be obtained in closed form. 

Let us assume that the elastic solution is 

q (x) = (A (01, . . . . ~0~) r) (I), r = r (5) Q = (I (z), J E cb (1.1) 

Here W is some domain of n-dimensional space (n = I, 2, 3); r and q are elements of 
the Banach space L(n) (Cn) (1 < P -< Lo); A (al,..., o,,) is a linear operator acting in this 
space and analytically dependent on the elastic constants or,..., on. 

Let us set 
Cl+ = Cl$O) (1 - “J (i = 1, 2, . . . . n) 

j (2) = I (Zl. . . . . z,,) = I (cp (1 - Zl), . . . . (up (I - :,J (1.2) 

According to the Volterra principle, the viscoelastic solution is obtained from the elastic 

solution by replacing zi by the appropriate viscoelastic operators Hi with continuous or 

slightly singular kernels 

(lip) (f) = \I /Ii (t -z) II (z) dz (1.3) 
;, 

In connection with the fact that the Volterra operators Hi (1.3) should be substituted in 
an operator function rather than in a scalar function, it is here impossible to use the ap- 

paratus of multidimensional operational calculus [S] developed for scalar functions. It 

is known that for the boundedness of the operator Hi in (1.3) in the space Ly (0, OX) of 
functions u (t) measurable in (0, m) with the norm 

jj u /jB = ot3~~oosup 1 u (t) 1 e+ (I .4) 

the condition 

11 Ni IJp = 7 1 fIi (t) 1 e+ dt < 20 (1.5) 
0” 

is necessary and sufficient. Let us assume that the condition (1. 5) is satisfied for i = 1, 
2, . . . . n and that the operator function f (z) in (1.2) is analytic in the polycircle D 
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I) 1 zi; I zi 1 ‘:. 11 lli /I’, d- Ai (i = 1, 2, . . . . II)) 

where Ai are some positive numbers. It hence follows that the expansion [4] 

j (2) = 2 v za 

II 

z = (21, . ..1 3J’ CI = (11, . . . . c1J, za z.Yz. z;* . . . ZIL an, 0 = (0, :.., 0) 

(I ,fj) 

(1.7) 

21 = 21 ! . . . zxn!, 3” = (&)Y.... (g-y 
which converges in the operator norm generated by the topology of the space LCP) (@), 

holds in D . 

Let us introduce the Banach space A,3 (7~ m, of vector functions u (t) with values in L(P) 

((D), measurable and bounded almost everywhere on 0 < t< ‘~7 [5] with the norm (1.4). 

Here and everywhere hencforth, [ a / (11 A 11) d enotes the norm of the element (the opera- 

tor A) in L(P) (@,), (I a JJ,? ( j/ -4 11~) is the norm in A!p. cu). 83 
By definition, let us set 

I (H) = ! (Hl, . . . . fI,() = 2 -g-- 

T r?” i (0) ,r” 
(1.8) 

11” - H” - 1 . . . HZ 

Volterra [6] used precisely such a construction substantially in the problem of the equi- 

librium of viscoelastic sphere on whose surface the displacements are given (see also CL]). 

The series (1.8) converges in the operator norm generated by the topology of the space 

~(p, *). It follows from (1. 8) that 
P 

f (H) = f (0) + G (1.9) 

Here G is a Volterra operator acting in A,$“’ %) 

(GM) (t) = \’ G (t - .c) 11 (t) d$ 
‘0 

(1.10) 

with the kernel determined by the expansion 

where the asterisk denotes the convolution, and the number of factors in the last equa- 

tion agrees with the superscript. Since (1.11) converges in the mean with weight eC3’ 

on a half-axis, then 
r / (; (t) 1 e-yt dt < v (1.12) 

0 

In order to obtain a rule for evaluating G (t), let us apply a Laplace time transformation 

to (1.11) term by term. We obtain 
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The rule obtained is the known correspondence princrple [7]. Therefore, under the as- 
sumptions introduced relative to the elastic solution (1.2). the correspondence principle 
is a corollary of the Volterra principle. The reverse is also true. 

The application of the Volterra principle sometimes results in the calculation of a 

scalar function f (2) of the operators Hi in (1.3) [8 - 111. In this case the apparatus of 
the multidimensional operational calculus can be used in normedrings [3]. This permits 

weakening of the demand imposed above on the function f (z), namely, it is sufficient 
to assume that the function f (2) Is analytic in the get s 

’ {‘il ‘i = hi (w), Rew>p (i-l, 2,..., n)) 

which is narrower than the polycircle D in (1.6). 
The operators Hi in (1.3) can be identified with elements of the maximal ideal M, 

of a commutative normed ring Y!,dt’ [3]. The set S is the combined spectrum of the 

elements Hi in this ring. 
According to a theorem of Shilov-Arens-Calderon [3], there exists an element G (t) 

of the ring v(:-‘f’ such that equality 

g (w) = f (h (w)) - f (0)s f (h (w), = f @l (w))r, .**, hn (w)) (1.14) 

holds for its Laplace transform g (w). This element belongs to the maximum ideal M, 
and therefore has the form (1.10) and satisfies the condition (I. IS). According to the 
general aspects of multidimensional operational calculus in normed rings, (1.9) follows 

from (1.14) (with f (0) replaced by f (0) Z). Therefore, we have again arrived at the cor- 
respondence principle [7]. Let us note that the above remains valid for locally analytic 

normal multivalued functions [12], particularly for roots and logarithms. 

The papers fl3, 141 are devoted to scalar analytic functions of a Volterra operator of 
the form (1.3). However, the relationship between the correspondence and Volterra 

principles has not been established therein. 

2, In applications, an approximate solution which is obtained as a result of replacing 
the elastic solution (1.2) by its approximating polynomial or some other simple function 
P (I) of the elastic constants, is often sought instead of the exact solution of the visco- 
elastic problem. Such is the procedure when the elastic solution is awkward or its ana- 

lytical form is unknown [15, 161. 
Let us show that if the operator-function f (z) in (1.2) is analytic in the domain D in 

(1.6) then the functional analytic approach affords the possibility of giving this appro- 
ximation method a foundation. A foundation for the approximation method of [15, 161 

is simultaneously obtained. 
Let D' be the polycircle (Zi; ( zi ( <IJ Hi/lo + A5,’ (i = 1, 2, . . . . n)}, where 0 < Ai’ < Ai, 

and &D’ is its skeleton [4] 
d=maxO&,If(z)--(z)I (2.1) 

Let us use the following integral representatrons from (1.6) and (1.7)) which are well 
known for the case of the scalar function f (z) [3, 171: 

IL 

f (Zl, . . . . z,,) fl (Hi - z$)-1 dzl . . . dz, 

i=l 

(2.2) 

From (2. l), (2.2) and from the estimate [ 181 



we obtain 

jj: (H) - P (H) (10 d d fl (II Hi !I0 + Ai’) (Ai’)-’ 
i-1 

It follows from (2.3) that the viscoelastic solution 1 CH) can be approximated, with any 

a priory assigned accuracy, by a polynomial oftile operators H,, . . . . H,,, since a par- 

tial sum of the series (1.7) call be taken as p (z) , say. Such a polynomial approximation 

of the elastic solution (for I( = 1) was used (without foundation) in [IO] in examining 

a particular problem, 

9, The need to construct n-operator functions of the form 

arises in the study of damping properties of elastically hereditary systems [19, 201. 

Let us consider these operators in the space LT (--;, .Q) of the functions u (t), which 

are measurable on the whole number axis with the norm 

The condition (1.5) is necessary and sufficient for boundedness of the operator Wi (3.1) 

in LsW) (-3, w). The product of two operators of the kind Wi is an operator of the same 

kind, whose kernel is the convolution of kernels of the cofactors. It hence follows that 

all that has been mentioned above in Sects. 1 and 2 remains valid upon replacement of 

Hi from (1.3) by Lvi from (3.1). 

4. The approximation method of [15, 161 is that the elastic solution, considered as a 

function of the elastic constants, is approximated by some simple function of these con- 

stants, and the correspondence principle is applied in the sense of [7] to the approxima- 

ting function. Since the correspondence principle is a corollary of the Volterra principle, 

the operator viewpoint can be used in examining the approximation method of n5, 161. 

Hence, the estimate (2.3) (under the assumption that the conditions under which it can 

be obtained are satisfied) yields a foundation for this approximation method. 

Let us note that for n = 1 the assumption that the kernel of the Volterra operator 

depends on the difference between the arguments can be discarded, and an operator H 

of the form 

(/Iu) (t) = i H ct. T) 
1 

(J (t) (k 1I.H /I, = sup 11 H (tn) 1 dt < w 

0 
o<t<~o 

can be examined. The estimate (2.3) remains valid even in this case. 

In connection with the above, the transfer of the results obtained in @l - ‘231 on the 

Cosserat spectrum to the case of an anisotropic medium is of interest. 

The author is grateful to lu. N. Rabotnov, S. G. Mikhlin and V. S. Ekel’chik for useful 

discussion of the research. 
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